Developer Foundation Track
Sponsored By

BRAINS

ORM

FUNDAMENTALS OF OBJECT RELATIONAL MAPPERS

DATA ACCESS..WE ALLDO IT

*Very few applications without DALs
*We build them over and over

*They change slightly, but still solve the same
problems

*Rarely are they feature complete

IMPEDANCE MISMATCH

*RDBMS to OO mapping doesn’t work well
*Your Objects shouldn’t match your data structure
*Converting from DB into Objects is what DALs do
Difficult to properly and completely solve

Invoi
sssss
=l Properties
/ﬁ‘ Custom
el
B Lineltem
Customer 7 PurchaseD
FH T = 5 ShipDat =
MName - lass
AAAAA §
AddressLine1
AddressLinEZ\ =
AddressLineE\ 5 IsActive
City \ B MailingAddress
ooooooooo “ Mame
Provine [Address & N
lass
i = Propel
= Ci
P~ |
Inv(V =
71 ~F L
aaaaaaaaa = p
ShipDate % p
mmmmmmmmm [a=

BASIC REQUIREMENTS OF A DAL

*ACID
*Atomicity
*Consistency
*|solation
*Durability

*Transactional
*Connection Style Agnostic
*Data Programming Style Agnostic

MORE REQUIREMENTS OF A DAL

*Unit Of Work
*Caching
*Lazy Loading

*Persistence Ignorance

*Persistence By Reachability
*\/ersioning/Deployment Story

STOP WRITING IT OVER AND OVER

*Frameworks
onHibernate
oiBatis
olLing2Sq|
oEntity Framework
oLLBLGen, CSLA, etc.

Code Generation

THE CODE GEN SITUATION

*Dog that doesn’t hunt

*Discreet separation of gen and hand rolled
*The edge is much closer to the norm

*You still have to maintain the generated code

ACIDITY

Robustness

*Pretty much handled by the underlying
database and data access technologies

APPLICATION STAYS AGNOSTIC TO...

*Connection style
*Access technology

TRANSACTIONING

Commit or Rollback

This is not....

UNIT OF WORK

Maintains a list of objects affected by a
business transaction and coordinates the
writing out of changes and the resolution of
concurrency problems.

(Fowler, PEAA)

CACHING

*Should be hidden from the main application
*Should be configurable

Application
code

A/

)
@
% ¢

Data Store

LAZY LOADING

*Should be hidden from the main application

*Implicitly occurring

*Should be configurable

public vold DisplaviineltemsFrom(Involice involce)
i
foreach (var lineltem in involce.ltems)

{
cnsole . .Writeline (lineltem.ToString ()) :

PERSISTENCE IGNORANCE

*Objects should have no knowledge about
how they are persisted

public void Save (Involice involiceloSave)
i
involceloSave.Save () :

PERSISTENCE BY REACHABILITY

*Child objects should implicitly be traversed and
persisted when saving the parent object
public vold Save(Involice involceToSave)

i

repository.Savelnvoice (involceToSave) ;
repository.Savelustomer (invoiceToSave.Customer) ;
foreach (var lineltem in invoiceTloSave.ltems=)

i
_repository.Savelnvolceltem(lineltem);

VERSIONING & DEPLOYMENT STORY

*Versioning of the mapping between database
and objects

*Versioning of any SQL that is required

|ldeally, the ability to include as separate
items in source control

*Deployment of database DDL

*Deployment of data access components (SQL,
SPs, mappings, etc.)

SUMMARY

A good ORM will save you in development
and maintenance effort.

It will also provide you with capabilities that
you will not have built otherwise.

RESOURCES

www.igloocoder.com Brownfiel

www.hibernate.org Application |
Developme

www.nhforge.org in .NET

nhusers Google Group

Kyle Baley
Donald Belcham

donald.belcham@
igloocoder.com

a

igloocoder..

CONSULTING INC.

